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OBJECTIVES:

 To introduce security goals and to discuss the types of attacks
that threaten these goals.

 To introduce traditional ciphers as symmetric-key ciphers to
create the background for understanding modern symmetric-key
ciphers.

] To introduce the elements of modern block ciphers and show an
example of a modern block cipher in which these elements are
used.

] To discuss the general idea behind asymmetric-key ciphers and
Introduce one common cipher in this category.

] To discuss message integrity and show how to use a
cryptographic hash function to create a message digest.



OBJECTIVES (continueq):

- To introduce the idea of message authentication and show how a
message digest combined with a secret can authenticate the
sender.

J To show how the idea of digital signatures can be used to
authenticate a message using a pair of private-public keys.

 To introduce the idea of entity authentication and show some
simple schemes using either a secret key or a pair of private-
public keys.

J To show how secret keys in symmetric-key cryptography and
how public keys in asymmetric-key cryptography can be
distributed and managed using KDCs or certificate authorities
(CAS).
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29-1 INTRODUCTION

We are living in the information age. We need to
keep information about every aspect of our lives. In
other words, information is an asset that has a value
like any other asset. As an asset, information needs
to be secured from attacks. To be secured,
information needs to be hidden from unauthorized
access (confidentiality), protected from unauthorized
change (/infegrity), and available to an authorized
entity when it is needed (availability).
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Figure 29.1 Taxonomy of attacks with relation to security goals
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29-2 TRADITIONAL CIPHERS

We now Ilook at the first goal of security,
confidentiality. Confidentiality can be achieved using
ciphers. Traditional ciphers are called symmetric-key
ciphers (or secret-key ciphers) because the same
key is used for encryption and decryption and the
key can be used for bidirectional communication.
Figure 29.2 shows the general idea behind a
symmetric-key cipher.
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Figure 29.2 General idea of traditional cipher
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‘ Note I

A substitution cipher replaces one

symbol with another.
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Figure 29.3 Symmetric-key: locking and unlocking with the same key
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‘ Note I

A substitution cipher replaces one

symbol with another.
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Figure 29.4 Representation of characters in modulo 26
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‘ Note I

In additive cipher, the plaintext,

ciphertext, and key are integers in

modulo 26.
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Example 29.1

Use the additive cipher with key = 15 to encrypt the message
“hello”.

Solution

We apply the encryption algorithm to the plaintext, character by
character. The result is “WTAAD”. Note that the cipher is
monoalphabetic because two instances of the same plaintext
character (Is) are encrypted as the same character (A).

Plaintext: h — 07 Encryption: (07 + 15) mod 26 Ciphertext: 22 - W
Plaintext: e — 04 Encryption: (04 + 15) mod 26 Ciphertext: 19 - T
Plaintext: 1 — 11 Encryption: (11 + 15) mod 26 Ciphertext: 00 — A
Plaintext: 1 — 11 Encryption: (11 + 15) mod 26 Ciphertext: 00 — A
Plaintext: o — 14 Encryption: (14 + 15) mod 26 Ciphertext: 03 - D
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Example 29.2

Use the additive cipher with key = 15 to decrypt the message
“WTAAD”.

Solution

We apply the decryption algorithm to the plaintext character by
character. The result is “hello”. Note that the operation is in
modulo 26, which means that we need to add 26 to a negative
result (for example —15 becomes 11).
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Figure 29.5 An example key for mono-alphabetic substitution cipher
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Example 29.3

We can use the key in Figure 29.5 to encrypt the message

this message 1s easy to encrypt but hard to find the key

The ciphertext is

ICFVQRVVNEFVRNVSIYRGAHSLIOJICNHTIYBFGTICRXRS
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‘ Note I

A transposition cipher reorders

symbols.
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Figure 29.6 Transposition cipher
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29-3 MODERN CIPHERS

The traditional symmetric-key ciphers that we have
studied so far are character-oriented ciphers. With
the advent of the computer, we need bit-oriented
ciphers. This is because the information to be
encrypted is not just text; it can also consist of
numbers, graphics, audio, and video data. It is
convenient to convert these types of data into a
stream of bits, to encrypt the stream, and then to
send the encrypted stream. A modern block cipher
can be either a block cipher or a stream cipher.
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Figure 29.7 A modern block cipher
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Figure 29.8 Components of a modern block cipher
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Figure 29.9 General structure of DES
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Figure 29.10 DES function
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Figure 29.11 Key generation
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Example 29.4

We choose a random plaintext block, a random key, and a
computer program to determine what the ciphertext block would
be (all in hexadecimal):

Plaintext: Key: CipherText:
123456 ABCD132536 AABB09182736CCDD COB7A8DO0OSF3A829C
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Example 29.5

To check the effectiveness of DES, when a single bit is
changed in the input, let us use two different plaintexts with only
one single bit difference. The two ciphertexts are completely
different without even changing the key:

Plaintext: Kevy: Ciphertext :
0000000000000000 22234512987ABB23 4789FD476E82A5F1
Plaintext: Key: Ciphertext:
0000000000000001 22234512987ABB23 OA4EDS5C15A63FEA3

Although the two plaintext blocks differ only in the rightmost bit,
the ciphertext blocks differ in 29 bits.

30



Figure 29.12 One-time pad
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29-4 ASYMMETRIC-KEY CIPHERS

In previous sections we discussed symmetric-key
ciphers. In this chapter, we start the discussion of
asymmetric-key ciphers. Symmetric-key and
asymmetric-key ciphers will exist in parallel and
continue to serve the community. We actually
believe that they are complements of each other; the
advantages of one can compensate for the
disadvantages of the other.
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‘ Note I

Symmetric-key cryptography is based
on sharing secrecy;

asymmetric-key cryptography is based

on personal secrecy.
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‘ Note I

In symmetric-key cryptography, symbols
are permuted or substituted,;

In asymmetric-key cryptography,

numbers are manipulated.
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Figure 29.13 Locking and unlocking in asymmetric-key cryptosystem
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‘ Note I

Asymmetric-key ciphers are sometimes

called public-key ciphers.
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Figure 29.14 General idea of asymmetric-key cryptosystem
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Figure 29.15 Encryption, decryption, and key Generation in RSA
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Example 29.6

For the sake of demonstration, let Bob choose 7 and 11 as p
and g and calculate n = 7 x 11 = 77. The value of @(n) =
(7 - 1)(11 — 1), or 60. If he chooses e to be 13, then dis 37.
Note that e x d mod 60 = 1. Now imagine that Alice wants to
send the plaintext 5 to Bob. She uses the public exponent 13 to
encrypt 5. This system is not safe because p and q are small.

Plaintext: 5 Ciphertext: 26
C=5=26mod77 P=26"=5mod77

Ciphertext: 26 Plaintext: 5
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Example 29.7

Here is a more realistic example calculated with a computer.
We choose a 512-bit p and g, calculate n and ¢(n), We then
choose e and calculate d. Finally, we show the results of
encryption and decryption. The integer pis a 159-digit number.

p= 96130345313583504574191581280615427909309845594996215822583150879
47940455056470638491257160180347503120986666064924201918087806674
1096063354219926661209

The integer g is a 160-digit number.

q-= 120601919572314469182767942044508960015559250546370339360617983217
314821484837646592153894532091752252732268301071206956046025138871
45524969000359660045617

41



Example 29.7 Continued

The modulus n= p x q. It has 309 digits.

n= 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656772727460097082714127730434960500556347274566
628060099924037102991424472292215772798531727033839381334692684137
327622000966676671831831088373420823444370953

¢(n) =(p—-1)(g— 1) has 309 digits.

d(n)= | 115935041739676149688925098646158875237714573754541447754855261376
147885408326350817276878815968325168468849300625485764111250162414
552339182927162507656751054233608492916752034482627988117554787657
013923444405716989581728196098226361075467211864612171359107358640
614008885170265377277264467341066243857664128
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Example 29.7 Continued

Bob chooses e = 35535 (the ideal is 65537). He then finds d.

e= 35535

d= 580083028600377639360936612896779175946690620896509621804228661113
805938528223587317062869100300217108590443384021707298690876006115
306202524959884448047568240966247081485817130463240644077704833134
010850947385295645071936774061197326557424237217617674620776371642
0760033708533328853214470885955136670294831

Alice wants to send the message “THIS IS A TEST”, which can
be changed to a numeric value using the 00-26 encoding
scheme (26 is the space character).

P= ‘ 1907081826081826002619041819
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Example 29.7 Continued

The ciphertext calculated by Alice is C =P¢, which is

C= 475309123646226827206365550610545180942371796070491716523239243054
452960613199328566617843418359114151197411252005682979794571736036
101278218847892741566090480023507190715277185914975188465888632101
148354103361657898467968386763733765777465625079280521148141844048
14184430812773059004692874248559166462108656

Bob can recover the plaintext from the ciphertext using P = C¢,
which is

The recovered plaintext is “THIS IS A TEST” after decoding.
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29-5 MESSAGE INTEGRITY

The cryptography systems that we have studied so
far provide secrecy, or confidentiality, but not
integrity. However, there are occasions where we
may not even need secrecy but instead must have
integrity. For example, Alice may write a will to
distribute her estate upon her death. The will does
not need to be encrypted. After her death, anyone
can examine the will. The integrity of the will,
however, needs to be preserved. Alice does not
want the contents of the will to be changed.
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Figure 29.16 Message and digest
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‘ Note I

The message digest needs to be safe

from change.
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29-6 MESSAGE AUTHENTICATION

A digest can be used to check the integrity of a
message: that the message has not been changed.
To ensure the integrity of the message and the data
origin authentication— that Alice is the originator of
the message, not somebody else—we need to
include a secret held by Alice (that Eve does not
possess) in the process; we need to create a
message authentication code (MAC). Figure 29.17
shows the idea.
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Figure 29.17 Message authentication code

M: Message
K: A shared secret key

MAC: Message authentication
code

Same?h|

4

M + MAC

Insecure channel

r” N )
[Noj » Discard

M + MAC [Yes]

Keep
the message

51



‘ Note I

A MAC provides message integrity
and message authentication using a

combination of a hash function and a

secret key.
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29-7 DIGITAL SIGNATURE

Another way to provide message integrity and
message authentication (and some more security
services as we see shortly) is a digital signature. A
MAC uses a secret key to protect the digest; a digital
signature uses a pair of private-public keys.
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‘ Note I

A digital signature uses a pair of private-

public keys.
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Figure 29.18 Digital signature process
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‘ Note I

A digital signature needs a public-key
system.

The signer signs with her private key;
the verifier verifies with the signer’s

public key.
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‘ Note I

A cryptosystem uses the private and
public keys of the receilver:

a digital signature uses the private and

public keys of the sender.
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Figure 29.19 Signing the digest
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Figure 29.20 Using a trusted center for non-repudiation
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Figure 29.21 The RSA signature one the message digest
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29-8 ENTITY AUTHENTICATION

Entity authentication is a technique designed to let
one party prove the identity of another party. An
entity can be a person, a process, a client, or a
server. The entity whose identity needs to be proven
is called the claimant; the party that tries to prove the
identity of the claimant is called the verifier.
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‘ Note I

In challenge-response authentication,

the claimant proves that she knows a
secret without sending it to the verifier.
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Figure 29.22 Unidirectional symmetric-key authentication
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Figure 29.23

Unidirectional asymmetric-key authentication

Alice
(claimant)

5?1 Encrypted with Alice’s public key
Rg A nonce sent by Bob

Alice

Bob
(verifier)

“- RB

Bl

66



Figure 29.24 Digital signature, unidirectional authentication
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29-9 KEY MANAGEMENT

We discussed symmetric-key and asymmetric-key
cryptography in the previous sections. However, we
have not yet discussed how secret keys In
symmetric-key cryptography, and public keys in
asymmetric-key cryptography, are distributed and
maintained. This section touches on these two
Issues.
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Figure 29.25 Multiple KDC’s
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‘ Note I

A session symmetric key between two

parties is used only once.
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Figure 29.26 Creating a session key using KDC
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Figure 29.27 Diffie-Hellman method
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‘ Note I

The symmetric (shared) key in the

Diffie-Hellman method is K = g*¥ mod p.

74



Example 29.8

Let us give a trivial example to make the procedure clear. Our
example uses small numbers, but note that in a real situation,
the numbers are very large. Assume that g=7 and p= 23. The
steps are as follows:

1. Alice chooses x = 3 and calculates R' = 73 mod 23 = 21.

2. Alice sends the number 21 to Bob.

3. Bob chooses y = 6 and calculates R, = 7° mod 23 = 4.

4. Bob sends the number 4 to Alice.

5. Alice calculates the symmetric key K = 43 mod 23 = 18. Bob
calculates the symmetric key K =219 mod 23 = 18.

The value of K is the same for both Alice and Bob:
g¥mod p=7' mod 35 = 18.
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‘ Note I

In public-key cryptography, everyone

has access to everyone’s public key;

public keys are available to the public.
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Figure 29.28 Certification authority
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